a) Basic or Discovery Scholarship学术类 [1] Yaojie Zhang Feng Ma Yudong Wang. Forecasting crude oil prices with a large set of predictors: Can LASSO select powerful predictors? [J]. Journal of Empirical Finance. 2019.54:97-117. [2] Yi, Yongsheng, Feng Ma: Interest Rate Level and Stock Return Predictability [J].Review of Financial Economics. 2019. 1873-5924 (SSCI). [3] Yaojie Zhang, Feng Ma, Tianyi Wang, Li Liu: Out-of-sample Volatility Prediction: A New Mixed-Frequency Approach [J]. Journal of Forecasting. 2019.38(7):669-680(SCI). [4] Yongsheng Yi, Feng Ma, Dengshi Huang, Yaojie Zhang:Interest rate level and stock return predictability [J]. Review of Financial Economics. 2019.37(4): 506-522. (SCI) [5] Yu Li, Feng Ma, Yaojie Zhang, Zuoping Xiao: Economic policy uncertainty and the Chinese stock market volatility: new evidence [J]. Applied Economics. 2019.51(49): 5398-5410. (SCI). [6] Feng Ma, Xinjie Lu, Ke Yang, Yaojie Zhang: Volatility forecasting: long memory, regime switching and heteroscedasticity [J]. Applied Economics. 2019. 51(38): 4151-4163. (SCI). [7] Weiju Xu, Jiqian Wang, Feng Ma, Xinjie Lu:Forecast the realized range-based volatility: The role of investor sentiment and regime switching [J]. Physica A-Statistical Mechanics and Its Applications. 2019.527. (SCI). [8] Feng Ma, Yaojie Zhang, Wahab, M. I. M, Xiaodong Lai: The role of jumps in the agricultural futures market on forecasting stock market volatility: New evidence [J]. Journal of Forecasting. 2019. 38(5): 400-414. (SCI). [9] Yongsheng Yi, Feng Ma, Yaojie Zhang, Dengshi Huang: Forecasting stock returns with cycle-decomposed predictors [J]. International Review of Financial Analysis. 2019. 64: 250-261. (SCI). [10] Jing Liu, Feng Ma, Yaojie Zhang: Forecasting the Chinese stock volatility across global stock markets [J]. Physica A-Statistical Mechanics and Its Applications. 2019. 525: 466-477. (SCI). [11] Yanyan Xu, Dengshi Huang, Feng Ma, Gaoxiu Qiao: Liquidity and realized range-based volatility forecasting: Evidence from China [J]. Physica A-Statistical Mechanics and Its Applications. 2019. 525: 1102-1113. (SCI). [12] Yixiang Chen, Feng Ma, Yaojie Zhang:Good, bad cojumps and volatility forecasting: New evidence from crude oil and the US stock markets [J]. Energy Economics. 2019. 81:52-62. (SCI). [13] Yaojie Zhang, Feng Ma, Yu Wei: Out-of-sample prediction of the oil futures market volatility: A comparison of new and traditional combination approaches [J]. Energy Economics. 2019. 81: 1109-1120. (SCI). [14] Feng Ma, Yin Liao, Yaojie Zhang, Yang Cao: Harnessing jump component for crude oil volatility forecasting in the presence of extreme shocks [J]. Journal of Empirical Finance. 2019. 52: 40-55. (SCI). [15] Weiju Xu, Feng Ma, Wang Chen, Bing Zhang: Asymmetric volatility spillovers between oil and stock markets: Evidence from China and the United States [J]. Energy Economics.2019.80: 310-320. (SCI). [16] Yaoji Zhang,Yu Wei, Feng Ma, Yongsheng Yi: Economic constraints and stock return predictability: A new approach [J]. International Review of Financial Analysis. 2019.63:1-9. (SCI). [17] Yaojie Zhang, Qing Zeng, Feng Ma,Benshan Shi: Forecasting stock returns: Do less powerful predictors help? [J]. Energy Economics.2019.78: 32-39. (SCI). [18] Feng Ma,Wahab, M. I. M, Yaoji Zhang:Forecasting the US stock volatility: An aligned jump index from G7 stock markets [J]. Pacific-Basin Finance Journal. 2019. 54: 132-146. (SCI). [19] Yanyan Xu,Dengshi Huang, Feng Ma, Gaoxiu Qiao: The heterogeneous impact of liquidity on volatility in Chinese stock index futures market [J]. Physica A-Statistical Mechanics and Its Applications. 2019. 517: 73-85. (SCI). [20] Yaojie Zhang, Feng Ma,Bo Zhu: Intraday momentum and stock return predictability: Evidence from China [J]. 2019.76: 319-329. (SCI). [21]马锋,张耀杰,黄登仕,赖晓冬. 石油期货价格波动的预测:基于范围波动的新证据[J]. 能源经济.2018.09 [21]Feng Ma, Yaojie Zhang, Dengshi Huang, Xiaodong Lai: Forecasting oil futures price volatility: New evidence from realized range-based volatility. Energy Economics[J]. 2018.09 [22]张耀杰,马锋等. 日内动量和股票收益可预测性:证据来自中国[J]. 经济模型. 2018.08 [22]Yaojie Zhang, Feng Ma, Bo Zhu: Intraday momentum and stock return predictability: Evidence from China[J]. Economic Modelling. 2018.08 [23]刘静,马锋,杨科,张耀杰. 基于大跳跃和小跳跃预测石油期货价格波动[J]. 能源经济,2018.04 [23]Jing Liu, Feng Ma, Ke Yang, Yaojie Zhang: Forecasting the oil futures price volatility: Large jumps and small jumps[J]. Energy Economics 2018.04 [24]马锋,刘静,张耀杰等. 低频数据真的没有信息吗?基于组合预测的角度[J]. 北美经济与金融杂志. 2018.04 [24]Feng Ma, Yu Li, Li Liu, Yaojie Zhang: Are low-frequency data really uninformative? A forecasting combination perspective[J]. The North American Journal of Economics and Finance 2018.04 [25]马锋,刘静等. 经济政策不确定性对原油期货实现波动性的预测[J]. 应用经济学.2017.10 [25]Feng Ma, M. I. M. Wahab, Jing Liu, Li Liu: Is economic policy uncertainty important to forecast the realized volatility of crude oil futures?[J]. Applied Economics 2017.10 [26]马锋,魏宇等. 利用高频数据预测原油的波动性:进一步的证据[J]. 经验经济学. 2017.07 [26]Feng Ma, Yu Wei, Wang Chen, Feng He: Forecasting the volatility of crude oil fures using high-frequency data: further evidence[J]. Empirical Economics 2017.07 [27]马锋等. 基于进一步证据预测中国股市实现波动率[J]. 应用经济学. 2016.01 [27]Wang Pu, Yixiang Chen, Feng Ma: Forecasting the realized volatility in the Chinese stock market: further evidence. Applied Economics. 2016.01 [28]马锋,魏宇,黄登仕. 基于符号收益和跳跃变差的高频波动率模型. 管理科学学报, 2017 [28]Feng Ma, Yu Wei, Dengshi, Huang. High frequency volatility model based on symbolic return and jump variation[J]. Journal of management science, 2017 [29]马锋,魏宇,黄登仕. 隔夜收益率能提高高频波动率模型的预测能力吗?系统工程学报,2016 [29]Feng Ma, Yu Wei, Dengshi, Huang. Can the overnight rate increase the forecasting ability of the high-frequency volatility model[J]. Journal of systems engineering , 2016 |